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A Convect ion S c h e m e  Sens i t i zed  to the Convect ion Direct ion 
of a Sca lar  Quant i ty  

Ji Ryong Cho* 
(Receired May /Z /006) 

It is generally believed that higher order differencing schemes for the convection transport 

term, e.g., the QUICK scheme and its variantb, are superior to the first order simple upwind 

differencing scheme in the sense that the former produces less numerical diffusion tiutn the latter. 

In this paper it is shown that this conclusion is no more correct when the flow changes its 

direction quite rapidly and the grid density is not sufficient. In this situation the simple upwind 

differencing returns much steeper change of convective ~ ariables lhan higher order schemes. The 

failure of usual higher order schcmes tbr this flow condition is attributed to the ignorance of 

convection direction of variables, and a new convection scheme sensitized to the direction of 

convective transport of a scalar quantity is devised and applied to typical benchmark flows. 

Results show that the proposed scheme is sufl'iciently accurate for computation of scalar fields. 

and also shox~, the optimum behaxior for tested problems. 

Key Words: Convection Scheme, Simple Upwind Difference Scheme (SUDS), Quadratic 

Upstream tnterpola on fbr Convective Kinematics (QI/I( 'K),  Tola l  Variation 

Diminishing tTVD) Constraint. Convection Oireclion Constraint (CDC). 

1. Introduction 

Ahhough many engineering problems now get 

benefits from the computational fluid dynamics 

technique, the technique still has problems to be 

addressed. They stem from two different sources: 

a mathematical modelling of the ['low and a 

numerical technique employed to soBe the model 

equations. For a simple shear flow where most 

part of fluid flows along one direction, the mathe- 

matical model controls the quality of numerical 

solutions, while numerical techniques have little 

effect. But when the flow direction is muhi- 

dimensional, numerical methods employed mani- 

fest its performance and solutions are depending 

on both of the above lwo aspects. Present study is 

focused on the latter aspect, specifically on the 
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nurnerical approximation of convective transport 

of a fluid mechanical quantity. 

Numerical approximation of convective spatial 

transport, rT(lt//))/rJ.v: at control surfaces does a 

key role in predicting accurate heat and fluid flow 

field. The natural choice of the central difference 

scheme (CDS. Patankar, 1980) is unacceptable 

because it forms unstable system matrix. The 

absolutely stable simple first order upwind 

scheme (SUDS, Patankar, 1980) has been hardly 

used because it produces too much unphysical, 

numerical diffusion, and thereby too broaden 

profiles for a fluid mechanical quantity. A diff;er- 

ent strategy formulating the convective and diffu- 

sive spatial transport collectively has been pur- 

sued by some researchers: "fhe well-known 

exponential difference scheme o1: Allen & South- 

well (1955) and its xariants, e.g. the Hybrid 

difference scheme of Spalding (1972) and the 

Power-Law difference scheme {PLDS) of Patan- 

kar (1980), have been most popular during the 
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last couple of decades because they produce stable 

matrix structure and smooth profiles of dependent 

variables. And most commercial CFD codes 

adopt these schemes as a standard option. How- 

ever, unfortunately, uncomfortable cases with the 

exponential-based scheme have been increased 

when one gradually turns to look flow fields of 

engineering problem where the topology of geom- 

etry is complex and, thereby, the fluid flow is 

multidimensional. The same mood has often been 

felt even tbr a Ilow with a simple geomeu-y uhen 

lira flow has a new physical element which has 

not been considered before. Because o1" these 

reasons, Leonard & Drummond (1995) suggested 

not to use the exponential-based scheme li)r a 

predictive purpose. A more accurate convection 

scheme QUICK (Quadratic Upstream Interpola- 

tion for Convective Kinematics) proposed by 

Leonard 11979) has been attractive because it 

reduces the numerical diffusion greatly, but its 

implementation in a CFD code and practical 

usage have been deferred because it suffers from 

unphysical oscillation of dependent variables 

where its spatial gradient is high. This oscillation 

is undesirable, especially for a turbulent t]ow, 

because tile estimated face value may take nega- 

tive value even for a positive definite quanti D, R)r 

example the turbulent kinetic energy and its 

dissipation rate, and thereby ttle computation 

may blow up during the numerical iteration. As it 

is demonstrated by Gaskell & Lau (1988). the 

increase of grid density does not resolve this 

problem in principle. So a usual practice for a 

turbulent flow is to use tile QUICK scheme for 

continuity and momentum equat ions  but 

exponential scMmes lbr turbulence equations 

assuming that the source/sink terms dominate the 

spatial transport terms in the turbulence equa- 

tions (for example, Lien & Leschziner, 1993). 

Such situation met a turning point when Har- 

ten 11983) and Sweby (1984) proposed a concept 

of TVD (Total Variation Diminishing) constraint 

for the convective transport approximation. This 

constraint acts to preserve monotonic variation of 

dependent variables and to eliminate unphysical 

oscillation. Some higher order convection 

schemes satist}'ing the TVD constraint have been 

followed: the SMART (Sharp and Monotonic 

Algorithm [or Realistic Transport) scheme of 

Gaskell and Lau (1988), the SHARP (Simple 

High Accuracy Resolution Program) scheme of 

Leonard (1988), the SOUCUP (Second-Order 

Upwind-Central differencing- first-order Up- 

wind) scheme of Zhu & Rodi (1991), and the 

UMIST (tlpstream Monotonic Interpolation lor 

Scalar Transport} of t.ien & Leschziner (1994) 

are typical examples. In alI these proposals an 

appropriate switching is done among basic inter- 

polation methods, e.g. SUDS, CDS, QUICK, etc. 

l o  achieve the numerical accuracy and the 

monotonic variation of dependent variables. 

In this study it is noted that a scalar quantity 

has a preferential direction for convecti\,e spatial 

transport, and a new convection scheme sensitized 

to the direction is proposed. For this scheme the 

second order upwind scheme of Atlas, Wolfsh- 

rein, & Israeli (1977) is adopted as a parent one 

because, according to Shyy (1985), it is most 

satisfactory in general arnong SUDS such as skew 

upwind of Raithby (1976), second order upwind, 

second order CDS, and QUICK. Also, ULTRA 

constraint of Leonard {1988) is used to achieve 

the TVD behavior. 

2. A New Proposal 

We consider an incompressible, steady, 1 dimen- 

sional flow l\w simplicity of discussion. The trans- 

port equation for a fluid mechanical quantity ~ is 

written as tollows: 

d , ,) =.  d_..{ V._d,6 ~ 
~]-v - ( ~  d x \  d r ]  + S  (1) 

where u, I ' ,  and S represent velocity, physical 

diffusivity, and source/sink term, respectively. 

Integration of Eq. (I) over the l-dimensional 

control volume shown in Fig. I gives 

., ,. r' j. + I i ,,7 dx 

OiVe ~Xu, 
-4- S'&p ( 2 ) 

This algebraic equation can now be handled 
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Fig. I. One-dimensional. stencil for estimation of Cr. 

ntnnerically if control volume face values u,,, m,,, 

r qS,,, I'~, and 1"~,,. are approximated properly. 

The main issue in this equation is how to approxi- 

mate convection term, or the left hand side of Eq. 

(2), and it is known as convection scheme. The 

natural choice is taking a simple algebraic mean 

of neighboring values, or the CDS. However, 

unfortunately, this difference scheme leads to 

unstable matrix structure. 

In approximating the control volume face val- 

ue, one usually starts with the Taylor series 

expansion. The approximation concept of 

Leonard's QUICK scheme is shown in Fig. 1. 

Note that two upstream (r and Cut,') and one 

downstream (r values at grid nodes are used to 

evaluate the value at the control volume face. 

When z(;>0, the control volume face value Cs 

can be determined from the following three 

Taylor series expansions: 

/ J X 2  , ,  3 
r r  ~.~v~ r __r ~-O(Jx ) 
r162 ~ r  dx  ~ 

�9 _ 8 r  O(Jx:')  

3Jx  J8 x~ r r  2 r  9_ Cy t O(Jx3)(3) 

where it is assumed that the grid spacing is 

uniform. By eliminating the first and second 

derivatives and neglecting higher order terms, the 

estimation is 

Cs ~ 35Do t -6 r162  - f tn ( r162 (4) 
. . . . . .  8 - - -  

I n  tact all higher order TVD schemes 

mentioned before use the same argument (q$~,r 

r and the difference among them is on the 

selection of the interpolation function. One may 

use more upstream and/or  downstream values to 

improve the accuracy. It is usually accepted that 

these estimations offer higher accuracy than the 

SUDS, 

Cs - r (5 )  

h should be noted here that the above Taylor 

series expansions may be not accepted in certain 

circumstances in a physical sense. Consider a 

situation where the convection dominates the 

flow field and the diffusion is absent. In that case, 

a scalar quantity r is simply convected down with 

the fluid stream, and it is clear that the value of 

the scalar quantity at a point is insensitive to the 

downstream value: 

r ftn(r (6a) 

The same consideration leads to the following 

constraint: 

Cs ~,:ftn(r if s ign(us) . s ign(u l , r )<0  (6b) 

These two constraints, Eqs. (6al and (6b), are 

here termed as CDC (Convection Direction Con- 

straint). Note that the QUICK scheme and all 

higher-order TVD schemes mentioned in Sec. 1 

do not satisfy these new constraints, but the 

SUDS always do. Because of this difference, on 

the contrary to the usual belief, the SLll)S gives 

much better prediction (or, lower numerical diffu- 

sion) in a particular flow configuration than the 

QUICK scheme as we will see later in Sec. 3. 

Recognizing this fact a new convection scheme 

blending the SUDS and second-order upwind 

difference scheme is proposed below: 

r ftn (r 

r ~-g(us,u~,<,) -~-~ - r  (7) 
2 

Note here that the face value qSs is assumed to 
depend on upstream velocities as well as upstream 
scalar values. This equation becomes the SUDS i f  
the switching function g=0,  and the second-order 

upwind difference if g - - l .  It is understood that 

the second term of the right hand side represents 

an anti-diffusive higher order correction to the 

diffusive SUDS given by the first term. The first 
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constraint, Eq. (6a), is satisfied automatically 

because downstream values are dropped in the 

above functional form. The second constraint, Eq. 

(6b), is satisfied by employing the following tran- 

sition function permitting smooth change over 

between two options: 

sin(  ((""" o'> 1'> g(u: .u. . ) - -  \2  \ \ - i ;}- '  / ..... ' / m . ~ /  (s)  

There is no definite reason to use this sine 

function, and one may devise a different one, for 

example, a simple on-off function, a power func- 

tion, etc. Due to the relatively small number of 

test cases in this study, no particular attention is 

given for tile function. Because the above formula- 

tion is not free from unphysical oscillations, a 

TVD constraint should be employed. In this 

study, the ULTRA constraint of Leonard & 

Drummond (1995) is used. The computation step 

to estimate the face value is summarized below: 

Step I The higher order estimation (HOE) is 

obtained by applying the second-order 

upwind scheme: 

qS~ '~ =- 3- qS-ti-7%--qS-L::'-' (9) 
2 

Step 2 The ULTRA constraint is applied to the 

estimation for the monotonicity: 

u W f  

#~~ if ~ (:-,(), (10) 

q ~ ' o e : # v  if #o<0 or # v ) l  

where 

Step 3 The TVD-corrected estimation is obtained 

by inversing the normalization: 

~ -  vs: (vs,,-- q , . . )  (12) 6.:- - qS.. + -,,o~ 

Step 4 The convection direction constraints are 

applied: 

7 VD ~:::~.+g(u:,u..)(~: -~.) (13) 

For a stable iterative computation, the so-called 

deferred-correction technique by Khosla & Rubin 

(1974) is adopted in the final expression: The 

second term on the right hand side is lumped into 

the source term, and only the first term is serving 

as an apparent convection. The resulting system 

matrix is the same with that of the SUDS. 

At this point one may argue that the CDC is 

not appropriate for the momentum equation 

because the fluid momentum at a point is influen- 

ced by tile downstream condition through the 

pressure reflection. Clear solution is applying the 

CDC only for a scalar equation and not for 

momentum equations. However. usually one 

[hvors uniform application of a single convection 

scheme for all transportable variables. Note that 

the downstream information is partially transfer- 

red to the approximation through the TVD con- 

straints. Anyway the presnt scheme should return 

better result than the SUDS because the formal 

truncation error is ~O(AxZ). 

3. Applications 

3.1 Pure convection of a step profile in a 
unidirectional flow 

The first test problem is an imaginary pure 

convection of a temperature T in a prescribed, 

unidirectional velocity field: the hot and the cold 

fluid flows are in the same direction, and the flow 

configuration is shown in Fig. 2(a). This bench- 

mark case has been adopted by Gaskell & kau 

(1988) and Shyy (1985) to test the accuracy of 

convection schemes. The computation coordinate 

is rotated intentionally by 45 degree to the I 

dimensional flow direction in order to maximize 

numerical errors associated with the convection 

scheme, and the convection equation is written as 

follows: 

& t T  , c~vT , 
-~3~--- ~ ~ y  :-u. (14) 

Because there is no diffusive transport the tem- 

perature of a fluid particle does not change as it 

is convected downwards. So the extremely sharp 

gradient of temperature invoked at the boundaries 

is maintained within the flow domain. Numerical 

solutions with the SUDS, QUICK, ULTRA- 

QUICK, and the present proposal are ,obtained 

by using a collocated-grid version of the TEACH 

code. Results with a 21x21 regular mesh are 

presented in Fig. 2(b). An increased grid density 
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Fig. 2. Pure convection of a slep profile in a unidir- 
ectional flow configuration (a) and compari- 
sons of" lhe predicted temperature profile (b). 

does not affect the general discussion and concht- 

sion which will be fol lowed below. 

The first-order accurate S U D S  returns a very 

diffusive temperature profile due to the influence 

of  artificial numerical diffusion. Of  course a fidse- 

diffusion-free solution can be obtained by align- 

ing one axes of  the coord ina te  with the flow 

direction for this particuhir problem, but it is 

difficult to obtain such grid arrangement  in gen- 

eral flow condit ion.  On the other hand, the steep 

gradient  is fairly well predicted by the QIJ ICK 

scheme. Ho~ever ,  unfortunately, the profile 

shows overshoot v,'ithin the hot stream, arid 

undershoot within the cold stream, and both 

peaks lie outside the physical bounds of  the solu- 

tion. The undershoot is more dangerous because 

it may return a negative vahte t\~r a positive 

definite scahtr quanlity,  e.g. the turbulent kinetic 

energy /,, and its dissipation rate g. Because of  this 

reason Ihe QI~I( 'K scheme is usually not adopted 

for turbulence equations.  The oscil lat ion free, 

monolotfic variaticm ,.,f temperature is achieved 

by lhe I : l  F R A - Q I I I ( ' K  while preser\.ing the 

sharp changeoxcr of tile (,,)IiI(K. The S M A R T  

algol i lhm of ( iaskell  & Lau gi~es comparable  

numerical accurac5 \~ith the I J I .TRA-QI I I ( 'K .  

I he  lesuli isnt included here lor simplici ty of 

prcscnl'<ition. 41though the plcsenl proposal 
based on the ~ c c c m d - o l d e r  a c c u r a l e  upwind dilt'er- 

enco rett.irns slightly slo~cr changeo\er of lenlper- 
alurc profile than the third-order accurate 

O I ! I C K  and its \ar iant U L T R A -  QtJ I ( 'K ,  it is 

supposed lo be comparab le  lbr a practical ptir- 

pose. The presenl scheme can be upgraded by 

emplo) ing  lllore upstrcam c,/~ values along \vith an 

appropriaic,  extended convect ion direction con- 

s l r a h l l  ( ( I ) ( ' )  I o  y i e l d  the  t h i r d - o r d e r  o r  even  

higher nunlerJcal accurac}., t4o\~exer, this job has 

not been tried heic, mainly because the aim of 

present  Mudy is lo prove \a l idi ty  of  tile C D C  

concept and parily because, lbr a praclical ( ' F D  

problem, dominance  of  the third-order accurate 

scheme o,~er the second-order  accurate one is not 

definite at lhe inomenl (Shy'y, 1985). 

3.2 Pure convection of a step profile in a 
bidirectional flow 

The second lest problem is similar to the pre'~i- 

ous case, but the hol and the cold streams are 

mo,<ing in opposite direction as it is depicted in 

Fig. 3(a). This benchnlark case has not been 

tested by others and introduced here for the first 

time. This situation occurs in a stagnation flow 

such as an impinging jet flow, and in a recirculat- 

ing flow. Again, the extremely sharp gradient of  

temperature distr ibution invoked at the flow 

boundaries is maintained within the l low domain  

due to the absence of  physical diffusion, l)elails 
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e c t i o n a l  riow configuration (a) and compari- 
sons or the predicted temperature profile (b). 

of numerical aspects are the same with the first 

c a s e .  

Within a CFD research community, it is gener- 

ally believed that the higher order schemes, typi- 

cally the QUICK and its variants with a TVD 

limiter, produces less numerical diffusion than the 

first-order simple upwind scheme. However, as it 

can be found in Fig. 3(b), for this benchmark 

case, the SUDS gives much steeper changeover of 

the temperature profile between the hot and cold 

stream than the QUICK and ULTRA-QUICK. 

The reason is as follows: For the SUDS, the 

information of one fluid stream can not be trans- 

ferred across the interface between the hot and 

cold stream flow in the opposit direction because 

the estimated temperature at a control volume 

face depends on the pure upstream noc/e value 

and does not depend on the downstream node 

value. However, for the QUICK and ULTRA- 

QUICK, the downstream information is transfer- 

red across the interface between the two streams 

because the estimated temperature at the control 

surface depends on lhe value at the downstream 

point located in a stream flowing in a opposit 

direction. Again, the QUICK scheme shows un- 

physical oscillations near the sharp slope. The 

present proposal sensitized to the convection 

direction of a scalar produces the sharp tempera- 

ture transition between two-streams, and performs 

much better than other higher order schemes. 

3.3 Laminar natural convection in a tall 

cavity 

As it has been shown by Leonard & Drum- 

mond (1995), the buoyancy-driven laminar flow 

in a two-dimensional rectangular cavity (see Fig. 

4(a)) is a good benchmark problem to test the 

accuracy of convection schemes. The flow near 

the hot-wall rises along the wall, turns at the top 

of the cavity, and then falls along the cold-wall as 

it looses heat. Whereas the flow near the mid- 

plane between the two vertical walls forms multi- 

ple 2-dimensional rotating cells for a certain flow 

condition as reported by Vest & Arpaci (1969). 

Leonard & Drummond (1995) have showed that 

these characteristic cells do not appear if the 

convection scheme produces too much numerical 

diffusion. Applying the Boussinesq approxima- 

t ion,  the flow e q u a t i o n  can be non-  

dimensionalized to yield: 

G ( 3 u c o ,  3 v w \  /82(o , o~co\~ 3 T  

G [ 3 u T  , 3 v T \ _  1 [ O 2 T  , 3 2 T \  

where the vorticity w and stream function ~ are 

defined by 
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3v ~u (18) w -  3x 3x 

3 ~  c ~  (19) u ~ ,  v = & 

Here the pressure is eliminated from flow equa- 

tions by adopting the co- ~ formulation. The 

Grashsof number GR and the Prandtl number PR 
are defined by 

G _  ~gLLdT and tJ~ -~ (20) 
R - - - - - -  ~2  0:' 

In the above relations, fl,u,a,g,L and Z/T are 

the thermal expansion ratio, the kinematic viscos- 

ity, the thermal diffusivity, the gravitational ac- 

celerllation, the width of cavity, and the tempera- 

ture difference between hot and cold walls, respec- 

tively. The height of enclosure H 33, GR=9500, 

and PR=-0.71 for present computation. Boundary 

conditions are as follows: 

u-:: ~ 0 at y = 0  and y = H  
- 3y 

- ~  at y = 0  and y H U = ~X 

0 at x--0 ,  x = l ,  y : 0  and y : - H  
T . = I  at x = 0  

T : 0  at x - -0  

3T = 0  at y = 0  and y - - H  (21) ay 

The numerical solver is the same with previous 

two cases. A 31x129 grid having uniform spacing 

in the x- and y-directions is used. 

Figure 4(b) shows computed streamline pat- 

terns with various convection schemes, and con- 

firms the finding of Leonard and Drummond 

(1969) : the SUDS and PLDS do not show any 

secondary rotating cells, and the third order 

accurate QUICK scheme forms the characteristic 

cells. The present scheme formally second order 

accurate also produces very similar secondary 

rotating cells: the number and spacing of rotating 

cells are the same. A slight difference between the 

QUICK and present scheme is observed in the 

shape of rotating cells formed near top and bot- 

tom insulation walls. However, unfortunately, it 

is difficult to compare the relative performance of 

two schemes because experimental results are not 

available. Note that the CDC is used for all 

transport equations uniformly. This result con- 

firms that the present scheme produces more 

reliable result than the usual SUDS or PLDS for 

a practical problem, especially when experimental 

data are absent. And it is supposed that the 

present one provides nearly the same prediction 

accuracy with the QUICK and its variants for a 

practical purpose. 

4. C o n c l u d i n g  R e m a r k s  

In this study, it has been shown that the higher 

order QUICK scheme and various TVD schemes 

are not always superior to the simple upwind 

difference scheme, and, in fact, that the converse is 

true in some flow conditions. The problem has 

occurred due to the negligence of convective 

character of a scalar quantity. The present paper 



.4 Convection Scheme Sensitized to the Convection Direction o.1 a Scalar Quantity 113 

has noted that a scalar quantity is simply convect- 

ed down with a iluid particle if there is no 

diffusi'~e transport, and the ( ' D ( '  (( 'onvection 

Direct ion ( 'ons t ra in t )  concept  has been 

introduced for a scalar quantity. A new numerical 

model for conveclive transport for the scalar 

satisfying both the TVI) constraint and ( ' D ( '  has 

been devised, and applied to typical benchmark 

flows. The numerical result st~ows that the present 

scheme mimics the convective transport of a 

scalar quantity quite well. In predicting the 

convective scalar field, owing ~o the ( ' i )C.  the 

present scheme perl\)rms better than the Q t  ICK 

and [ILTRA-QUI(.. 'K if the flow direction 

changes rapidly. It should be admitted that the 

CDC concept is not correct, in a strict physical 

sense, for a numerical modelling of the convective 

monmtum transport because the mometum field 

i3as an ellitic nalt.re and the downstream informa- 

tion may be feedback to upstream through the 

pressure reflection. However, the third test case 

shows that, lbr a practical purpose, it can be used 

with sufficient numerical accurac~ and v,iflaot.t 

unrealistic physical beh~,\ior. In fact, downstream 

information is transfered backward through the 

I-VD constraint partially. A recirculttting zone 

and a stagnation region are common for an engi- 

neering ('I-:D problem and they lbrm the afore- 

mentioned flow situation. If there is a significant 

variation of a scalar, it is expected that the present 

proposal would provide better prediction. In fact. 

preliminary numerical study of heat transfer of 

impinging jet flows by the author showed a sen- 

sible change of the stagnation point Nusseh num- 

ber depending on the numerical model for the 

convective transport. These results are in due 

course to be appeared. 
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