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A Convection Scheme Sensitized to the Convection Direction
of a Scalar Quantity

Ji Ryong Cho*
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It is generally believed that higher order differencing schemes for the convection transport

term, e.g.. the QUICK scheme and its variants, are superior to the first order simple upwind

differencing scheme in the sense that the former produces less numerical diffusion than the lader.

In this paper it is shown that this conclusion is no more correct when the flow changes its

direction quite rapidly and the grid density is not sufficient. In this situation the simple upwind

differencing returns much steeper change of convective variables than higher order schemes. The

failure of usual higher order schemes for this flow condition is attributed to the ignorance of

convection direction of variables. and a new convection scheme sensitized to the direction of

convective transport of a scalar quantity is devised and applied to typical benchmark flows.

Results show that the proposed scheme is sufficiently accurate for computation of scalar fields.

and also show the optimum behavior for tested problems.

Key Words: Convection Scheme, Simple Upwind Difference Scheme (SUDS). Quadratic
Upstream Interpola on for Convective Kinematics (QUICK). Total Variation
Diminishing (TVD) Constraint. Convection Direction Constraint (CDC).

1. Introeduction

Although many engineering problems now get
benefits from the computational fluid dynamics
technique, the technique still has problems to be
addressed. They stem from two different sources:
a mathematical modelling of the flow and a
numerical technique employed to solve the model
equations. For a simple shear flow where most
part of fluid flows along one direction. the mathe-
matical model controls the quality of numerical
solutions, while numerical techniques have little
effect. But when the flow direction is mulu-
dimensional. numerical methods employed mani-
fest its performance and solutions are depending
on both of the ubove two aspects. Present study is
focused on the latter aspect. specificatly on the
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numerical approximation of convective transport
of a fluid mechanical quantity.

Numerical approximation of convective spatial
transport. (e ,0) /ox,. at control surfaces does a
key role in predicting accurate heat and fluid flow
field. The natural choice of the central difference
scheme (CDS. Patankar, 1980) is unacceptable
because it forms unstable system matrix. The
absolutely stable simple first order upwind
scheme (SUDS. Patankar, 1980) has been hardly
used because it produces too much unphysical,
numerical diffusion, and thereby too broaden
profites for a fluid mechanical gquantity. A differ-
ent strategy formulating the convective and diffu-
sive spatial transport collectively has been pur-
sued by some researchers: The well-known
exponential difference scheme ol Allen & South-
the Hybnd
difference scheme of Spalding (1972} and the

well (1955) and its vanants, e.g.

Power-Law difference scheme (PLDS) of Patan-
kar (1980), have been most popular during the
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last couple of decades because they produce stable
matrix structure and smooth profiles of dependent
variables. CFD codes
adopt these schemes as a standard option. How-

And most commercial

ever, unfortunately, uncomfortable cases with the
exponential-based scheme have been increased

when one gradually turns to look flow fields of

engineering problem where the topology of geom-
etry is complex and. thereby, the {luid flow is
multidimensional. The same mood has often been
felt even for a flow with a simple geometry when
the flow has a new physical element which has
not been considered before. Because of these
reasons, Leonard & Drummond (1995) suggested
not to use the exponential-based scheme for a
predictive purpose. A more accurate convection
scheme QUICK (Quadratic Upstream Interpola-
tion for Convective Kinematics) proposed by
Leonard (1979) has been attractive because it
reduces the numerical diffusion greatly, but its
implementation in a CFD code and practical
usage have been deferred because it suffers from
unphysical oscillation of dependent variubles
where its spatial gradient is high. This oscillation
is undesirable. especially for a turbulent flow.
because the estimated face value may take nega-
tive value even for a positive definite quantity, for
example the turbulent kinetic energy and its
dissipation rate, and thereby the computation
may blow up during the numerical iteration. As it
is demonstrated by Gaskell & Lau (1988). the
increase of grid density does not resolve this
problem in principle. So a usual practice for a
turbulent flow is to use the QUICK scheme for
continuity and momentum equations but
exponential schemes for turbulence equarions
assuming that the source/sink terms dominate the
spatial transport terms in the turbulence equa-
tions (for example, Lien & Leschziner, 1993).
Such situation met a turning point when Har-
ten (1983) and Sweby (1984) proposed a concept
of TVD (Total Variation Diminishing) constraint
for the convective transport approximation. This

constraint acts to preserve monotonic variation of

dependent variables and to eliminate unphysical

oscitlation. Some higher order convection

schemes satisfying the TVD constraint have been

followed: the SMART (Sharp and Monotonic
Algorithm for Realistic Transport) scheme of
Gaskell and Lau (1988), the SHARP (Simple
High Accuracy Resolution Program) scheme of
Leonard (1988), the SOUCUP (Second-Order
Upwind-Central differencing- first-order Up-
wind) scheme of Zhu & Rodi (1991), and the
UMIST (Upstream Monotonic Interpolation for
Scalar Transport) of Lien & Leschziner (1994)
are typical examples. In all these proposals an
appropriate switching is done among basic inter-
polation methods, e.g. SUDS, CDS. QUICK, etc.
accuracy and the

o achieve the numerical

monotonic variation of dependent variables.

In this study it 15 noted that a scalar quantity
has a preferential direction for convective spatial
transport, and a new convection scheme sensitized
to the direction is proposed. For this scheme the
second order upwind scheme of Atias, Wolfsh-
tein, & Israeh (1977) is adopted as a parent one
because, according to Shyy (1985), it is most
satisfactory in general among SUDS such as skew
upwind of Raithby (1976). second order upwind,
second order CDS, and QUICK. Also, ULTRA
constraint of Leonard (1988) is used to achieve
the TVD behavior.

2. A New Proposal

We consider an incompressible, steady, 1-dimen-
sional flow for simplicity of discussion. The trans-
port equation for a fluid mechanical quantity ¢ is
written as follows:

. _d{rddy, ¢
(ut) =2 L)+ s (1)

where u., [, and S represent velocity, physical
diffusivity, and source/sink term, respectively.
Integration of Eq. (1) over the |-dimensional
control volume shown in Fig. | gives

- v_(l.‘/).) _< v.d@) (Yeg
wete e =(14) (1 9E) +(* san

Ry
LB de) _ Dlde—dw)
Axe Sxw
+ Sévp (2)

This algebraic equation can now be handled
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numerically if control volume face values .. ..
e Pus 1w and [, are approximated properly.
The main issue in this equation is how to approxi-
mate convection term, or the left hand side of Eq.
(2). and it is known as convection scheme. The
natural choice is taking a simple algebraic mean
of neighboring values, or the CDS. However,
unfortunately, this difference scheme leads to
unstable matrix structure.

In approximating the control volume face val-
ue, one usually starts with the Taylor series
expansion. The approximation concept of
Leonard’s QUICK scheme is shown in Fig. 1.
Note that two upstream (¢, and ¢,,) and one
downstream ( ¢,) values at grid nodes are used to
evaluate the value at the control volume face.
When g, >(, the control volume face value ¢,
can be determined from the following three

Taylor series expansions:
14 A2
$o  GrF d,\ ¢ /'—]g— ¢r + O(dx*)

1+ .2
po=dr LA gy 0war)

- 34x 94x*

buoe - 9 P+ 3 @7+ O(dx*)(3)

where it is assumed that the grid spacing is
uniform. By eliminating the first and second
derivatives and neglecting higher order terms. the
estimation is

brx 3¢ot Gﬁl ~ P . ftn(éo,dv,dur) (4)

TVD
mentioned before use the same argument (¢, ¢,

In fact all higher order schemes

¢uu). and the difference among them is on the
selection of the interpolation function. One may
use more upstream and/or downstream values to
improve the accuracy. It is usually accepted that
these estimations offer higher accuracy than the
SUDS.

br —bu (5)
It should be noted here that the above Taylor
series expansions may be not accepted in certain
circumstances in a physical sense. Consider a
situation where the convection dominates the
flow field and the diffusion is absent. In that case,
a scalar quantity ¢ is simply convected down with
the fluid stream. and it is clear that the value of
the scalar quantity at a point is insensitive to the
downstream value:

¢s ftn( o) (6a)
The same consideration leads to the following
constraint:
¢+ ftn(hon) if sign(ae,)-sign(zep:) <0 (6b)
These two constraints, Eqs. (6a) and (6b). are
here termed as CDC (Convection Direction Con-
straint). Note that the QUICK scheme and all
higher-order TVD schemes mentioned in Sec. |
do not satisfy these new constraints, but the
SUDS always do. Because of this difference, on
the contrary to the usual belief, the SUDS gives
much better prediction (or, lower numerical diffu-
sion) in a particular flow configuration than the
QUICK scheme as we will see later in Sec. 3.
Recognizing this fact a new convection scheme
blending the SUDS and second-order upwind
difference scheme is proposed below:

dr= 0 (v, duv, s, ttur)

* du *g(uf.uuu)-qs'—u%m (7)

Note here that the face value ¢, is assumed to
depend on upstream velocities as well as upstream
scalar values. This equation becomes the SUDS if
the switching function g=0, and the second-order
upwind difference if g==1. It is understood that
the second term of the right hand side represents
an anti-diffusive higher order correction to the
diffusive SUDS given by the first term. The first
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constraint, Eq. (6a), is satisfied automatically
because downstream values are dropped in the
above functional form. The second constraint, Eq.
(6b), is satisfied by employing the following tran-
sition function permitting smooth change over
between two options:

g(llf,llz/l/):Sin<’g’<<‘1£'yg‘,0> ,1> ) (%)
Uy max min

There is no definite reason to use this sine
function, and one may devise a different one. for
example, a simple on-off function, a power func-
tion, etc. Due to the relatively small number of
test cases in this study, no particular attention is
given for the function. Because the above formula-
tion is not free from unphysical oscillations, a
TVD constraint should be employed. In this
study, the ULTRA constraint of Leonard &
Drummond (1995) is used. The computation step
to estimate the face value is summarized below:

Step 1 The higher order estimation (HOE}) is
obtained by applying the second-order

upwind scheme:

HHoE :,35?155 buy. (9)
Step 2 The ULTRA constraint is applied to the
estimation for the monotonicity:

pu<PE<] if 0<gu<1
$7*—=0 it gu—0, (10)

%705:17;1/ if §le‘<0 or i"”

where
c . b
d)‘ ¢D“¢UU (l])

Step 3 The TVD-corrected estimation is obtained
by inversing the normalization:

D0 = hup+ G (Po puu) (12)

Step 4 The convection direction constraints are

applied:
pr=pv+glur,uw)¢r’ —du) (13)
For a stable iterative computation, the so-called
deferred-correction technique by Khosla & Rubin
(1974) is adopted in the final expression: The
second term on the right hand side is lumped into
the source term, and only the first term is serving

as an apparent convection. The resulting system
matrix is the same with that of the SUDS.

At this point one may argue that the CDC is
not appropriate for the momentum equation
because the fluid momentum at a point is influen-
ced by the downstream condition through the
pressure reflection. Clear solution is applying the
CDC only for a scalar equation and not for
momentum equations. However, usually one
favors uniform application of a single convection
scheme for all transportable variables. Note that
the downstream information is partially transfer-
red to the approximation through the TVD con-
straints. Anyway the presnt scheme should return
better result than the SUDS because the formal

truncation error is ~ O(dx?).
3. Applications

3.1 Pure convection of a step profile in a
unidirectional flow
The first test problem is an imaginary pure
convection of a temperature 7" in a prescribed,
unidirectional velocity field: the hot and the cold
fluid flows are in the same direction, and the flow
configuration is shown in Fig. 2(a). This bench-
mark case has been adopted by Gaskell & Lau
(1988) and Shyy (1985) to test the accuracy of
convection schemes. The computation coordinate
is rotated intentionally by 45 degree to the |
-dimensional flow direction in order to maximize
numerical errors associated with the convection
scheme, and the convection equation is written as
follows:
a0l -, (14)
Because there is no diffusive transport the tem-
perature of a fluid particle does not change as it
is convected downwards. So the extremely sharp
gradient of temperature invoked at the boundaries
is maintained within the flow domain. Numerical
solutions with the SUDS, QUICK, ULTRA-
QUICK, and the present proposal are obtained
by using a collocated-grid version of the TEACH
code. Results with a 21x21 regular mesh are
presented in Fig. 2(b). An increased grid density
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Fig. 2. Pure convection of a step profile in a unidir-

ectional flow configuration (a) and compari-

sons of the predicted temperature profile (b).

does not affect the general discussion and conclu-
sion which will be followed below.

The first-order accurate SUDS returns a very
diffusive temperature profile due to the influence
of artificial numerical diffusion. Of course a false-
diffusion-free solution can be obtained by align-
ing one axes of the coordinate with the flow
direction for this particular problem, but it is
difficult to obtain such grid arrangement in gen-
eral flow condition. On the other hand, the steep
gradient is fairly well predicted by the QUICK

scheme. However. unfortunately, the profile
shows overshoot within the hot stream. and
undershoot within the cold stream., and both
peaks lie outside the physical bounds of the solu-
tion. The undershoot is more dangerous because
it may return a negative value for a positive
definite scalar quantity. e.g. the turbulent kinetic
energy 4 and its dissipation rate ¢. Because of this
reason the QUICK scheme is usually not adopted
for wurbulence equations. The oscillation free.
monotonic variation of temperature is achieved
by the UL'TRA-QUICK while preserving the
shurp changeover of the QUICK. The SMART
algorithm of Gaskell & Lau gives comparable
numerical accuracy with the ULTRA-QUICK.
The result isn't cluded here for simplicity of
presentation.  Although  the  present  proposal
based on the second-order accurate upwind differ-
ence returns slightly slower changeover of temper-
ature  profife  than the third-order accurate
QUICK and its variant ULTRA- QUICK, it is
supposed to be comparable for a practical pur-
pose. The present scheme can be upgraded by
employing more upstream ¢ values along with an
appropriate. extended convection direction con-
straint (CDCY to vield the third-order or even
higher numerical accuracy. However, this job has
not been tried here, mainly because the aim of
present study is to prove validity of the CDC
concept and purtly because. for a practical CFD
problem. dominance of the third-order accurate
scheme over the second-order accurate one is not

definite at the moment (Shyy, 1985).

3.2 Pure convection of a step profile in a
bidirectional flow

The second test problem is similar to the previ-
ous case, but the hot and the cold streams are
moving in opposite direction as it is depicted in
Fig. 3(a). This benchmark case has not been
tested by others and introduced here for the first
time. This situation occurs In a stagnation flow
such as an impinging jet flow, and in a recirculat-
ing flow. Again, the extremely sharp gradient of
temperature distribution invoked at the flow
boundaries 1s maintained within the flow domain
due to the absence of physical diffusion. Details
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sons of the predicted temperature profile (b).

of numerical aspects are the same with the first
case.

Within a CFD research community, it is gener-
ally believed that the higher order schemes, typi-
cally the QUICK and its variants with a TVD
limiter, produces less numerical diffusion than the
first-order simple upwind scheme. However, as it
can be found in Fig. 3(b), for this benchmark
case, the SUDS gives much steeper changeover of
the temperature profile between the hot and cold
stream than the QUICK and ULTRA-QUICK.

The reason is as follows: For the SUDS, the
information of one fluid stream can not be trans-
ferred across the interface between the hot and
cold stream flow in the opposit direction because
the estimated temperature at a control volume
face depends on the pure upstream node value
and does not depend on the downstream node
value. However, for the QUICK and ULTRA-
QUICK. the downstream information is transfer-
red across the interface between the two streams
because the estimated temperature at the control
surface depends on the value at the downstream
point located in a stream flowing in a opposit
direction. Again, the QUICK scheme shows un-
physical oscillations near the sharp slope. The
present proposal sensitized to the convection
direction of a scalar produces the sharp tempera-
ture transition between two-streams, and performs
much better than other higher order schemes.

3.3 Laminar natural convection in a tall
cavity

As it has been shown by Leonard & Drum-
mond (1995), the buoyancy-driven laminar flow
in a two-dimensional rectangular cavity (see Fig.
4(a)) is a good benchmark problem to test the
accuracy of convection schemes. The flow near
the hot-wall rises along the wall, turns at the top
of the cavity, and then falls along the cold-wall as
it looses heat. Whereas the flow near the mid-
plane between the two vertical walls forms multi-
ple 2-dimensional rotating cells for a certain flow
condition as reported by Vest & Arpaci (1969).
Leonard & Drummond (1995) have showed that
these characteristic cells do not appear if the
convection scheme produces too much numerical
diffusion. Applying the Boussinesq approxima-

tion, the flow equation can be non-
dimensionalized to yield:
Ouw | dvw\_( 3w _0260) oT
GR( ox oy >*< oz T ay? o (13)
oul &;T)_L( *T ﬂ)
Gl P42 )= (G ) 0o
2 2
e (17)

where the vorticity ¢ and stream function ¥ are
defined by
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U= ay, v= W
Here the pressure is eliminated from flow equa-
tions by adopting the @— ¥ formulation. The
Grashsof number (G, and the Prandtl number P;
are defined by

3
Go=BELAT ung Pt (20)

In the above relations, 8,v,a,g,L and 4T are
the thermal expansion ratio, the kinematic viscos-
ity, the thermal diffusivity, the gravitational ac-
celerllation, the width of cavity, and the tempera-
ture difference between hot and cold walls, respec-
tively. The height of enclosure H =33, Gr=9500,
and Pr==0.71 for present computation. Boundary
conditions are as follows:

u _Ty\io at y=0 and y=H
U;_V%%ZO at y={ and y=}

w=0 at x=0, x=1, y=0and y=H
T=1 at x=0

T =0 at x=90

oT _ RPN _

&y _0 at }*O and y-H (21)

The numerical solver is the same with previous
two cases. A 31x129 grid having uniform spacing
in the x- and y-directions is used.

Figure 4(b) shows computed streamline pat-
terns with various convection schemes, and con-

FLDS (b)

QUICK

The tall cavity configuration (a) and predicted streamline patterns (b).

firms the finding of Leonard and Drummond
(1969) . the SUDS and PLDS do not show any
secondary rotating cells, and the third order
accurate QUICK scheme forms the characteristic
cells. The present scheme formally second order
accurate also produces very similar secondary
rotating cells: the number and spacing of rotating
cells are the same. A slight difference between the
QUICK and present scheme is observed in the
shape of rotating cells formed near top and bot-
tom insulation walls. However, unfortunately, it
is difficult to compare the relative performance of
two schemes because experimental results are not
available. Note that the CDC is used for all
transport equations uniformly. This result con-
firms that the present scheme produces more
reliable result than the usual SUDS or PLDS for
a practical problem, especially when experimental
data are absent. And it is supposed that the
present one provides nearly the same prediction
accuracy with the QUICK and its variants for a
practical purpose.

4. Concluding Remarks

In this study, it has been shown that the higher
order QUICK scheme and various TVD schemes
are not always superior to the simple upwind
difference scheme, and, in fact, that the converse is
true in some flow conditions. The problem has
occurred due to the negligence of convective
character of a scalar quantity. The present paper
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has noted that a scalar quantity is simply convect-
ed down with a tluid particle if there is no
diffusive transport, and the CDC (Convection
Direction Constraint) concept  has  been
introduced for a scalar quantity. A new numerical
model for convective transport for the scalar
satistying both the TVD constraint and CDC has
been devised. and applied to typical benchmark
flows. The numerical result shows that the present
scheme mimics the convective transport of a
scalar quantity quite well. In predicting the
convective scalar field, owing to the CDC. the
present scheme performs better than the QUICK
and ULTRA-QUICK if the

changes rapidly. It should be admitted that the

flow direction
CDC concept is not correct. in a strict physical
sense. for a numerical modelling of the convective
mometum transport because the mometum tield
has an ellitic nature and the downstream informa-
tion may be feedback to upstream through the
pressure reflection. However, the third test case
shows that, for a practical purpose, it can be used
with sufficient numerical accuracy and without
unrealistic physical behavior. In fact. downstream
information is transtered backward through the
TVD constraint partially. A recirculating zone
and a stagnation region are common for an engi-
neering CFD problem and they form the afore-
mentioned flow situation. It there is a significant
variation of a scalar. it is expected that the present
proposal would provide better prediction. In fact.
preliminary numerical study of heat transfer of
impinging jet flows by the author showed u sen-
sible change of the stagnation point Nusselt num-
ber depending on the numerical model for the
convective transport. These results are in due
course to be appeared.
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